
PHYC 564, Laser Physics II

Homework #4, Due Wed. March 24, 2021

Instructor: M. Sheik-Bahae, University of New Mexico

Design of an Optically –Pumped Semiconductor Laser (OPSL)

You are asked to design and analyze a MQW gain structure for an OPSL as depicted in Fig.(a) below.

The QWs are made from GaAs and the barriers are $Al_xGa_{1-x}As$ which is lattice matched to GaAs. Assume the operation is at room temperature (T=300K) where

 $E_{g}^{GaAs} = 1.424 \text{ eV}$ and $E_{g}^{AIGaAs}(x) = E_{g}^{GaAs} + 1.247x$

Furthermore, the QW spacing should satisfy resonant-periodic-gain (RPG) structure; thus each QW should be placed at the antinode of the standing-wave laser field inside the cavity (Fig. b).

- (a) This laser is to be pumped in the barrier of MQW by a laser at $\lambda_p=750$ nm. Therefore, choose the barrier bandgap to be 1.5kT below the photon energy of the pump.
- (b) Knowing ΔE_C (see next page) choose the largest QW thickness (L_w) that allows only one QW bound state (n=1) in its conduction band. What is the energy of this level (relative to the top of the GaAs conduction band)
- (c) Knowing L_w from part b), obtain the number of bound-states (m) in the valence band for both heavyhole (hh) and light-holes (lh). Find the energy of each bound state. Note: For parts b and c you may have to use simple numerical/graphical solutions.
- (d) Qualitatively plot equilibrium absorption coefficient (i.e. no pumping) versus wavelength of the QW structure assuming the transition selection rule follows the infinite barrier case: $I_{nm}=\delta_{nm}$. Please be quantitative in your wavelength axis.
- (e) Calculate the carrier density required to bring this structure to transparency $(F_c-F_v=E_e^{n=1}-E_{hh}^{m=1})$. For this part, first set-up the equations considering all sub-bands (levels). For numerical estimation, however, only take into account one sub-band in the valence band corresponding to m=1 heavy-hole level.
- (f) Pick a reasonable laser wavelength and then design the separation of QWs to satisfy RPG condition. Assume an effective index of refraction n=3.4 for the MQW structure, and a DBR reflection coefficient $r_{DBR} \sim -1$ (i.e. a node at the DBR interface)

$$E_g(Al_xGa_{1-x}As) = 1.424 + 1.247x \text{ eV}$$
 (300 K)
 $\Delta E_g(x) = 1.247x \text{ eV}$
 $\Delta E_c = 0.67 \Delta E_g \qquad \Delta E_v = 0.33 \Delta E_g$

ELECTRONIC PROPERTIES OF SI, Ge, AND A FEW COMPOUNDS

Table K.3 Important Band Structure Parameters for $Al_xGa_{1-x}As$, $In_{1-x}Ga_xAs$, $Al_xIn_{1-x}As$, and $Ga_xIn_{1-x}As_yP_{1-y}$ Compounds^{a-e}

```
General Interpolation Formula for Ternary Compound Parameters P:

P(A_x B_{1-x}C) = x P(AC) + (1-x)P(BC)
```

710

$P(A_x B_{1-x}C) = x P(AC) +$	+(1-x)P(BC)	Ref.
$Al_xGa_{1-x}As$		
	at 300 K for $x < 0.4$	а
$^{\circ}$ 1.519 + 1.447x - 0.15x ² (eV)	at 0 K for $x < 0.4$	b
$m_e^*/m_0 = 0.067 + 0.083x$		а
$m_{hh}^*/m_0 = 0.50 + 0.29x$ (Density of state	es mass)	interpol.
$m_{lh}^*/m_0 = 0.087 + 0.063x$		f
$m_{so}^*/m_0 = 0.15 + 0.09x$		а
$\gamma_i(x) = x\gamma_i(A As) + (1 - x)\gamma_i(GaAs)$	(for calculating transport masses)	interpol.
$In_{1-x}Ga_xAs$		
5	at 300 K	с
	at 300 K	а
	at 2 K	
$m_e^*/m_0 = 0.025(1-x) + 0.071x - 0.016$	53x(1-x)	
or		
$1/m_e^*(x) = x/m_e^*(GaAs) + (1-x)/m_e^*(GaAs)$	(InAs)	
$In_{0.53}Ga_{0.47}As$		
$E_g(\Gamma) = 0.813 \text{ (eV)}$ at 2 K		а
0.75 (eV) at 300 K		
$m_e^*/m_0 = 0.041$		
$m_{hh}^*/m_0 = 0.465$ //[001]		
0.5.6 //[110]		
$m_{lh}^*/m_0 = 0.0503$		
$Al_{x}In_{1-x}As$	200 X	
$E_g(\Gamma) = 0.36 + 2.35x + 0.24x^2$ (eV) at		а
	300 K for $0.44 < x < 0.54$	
	4 K for $0.44 < x < 0.54$	
$Al_{0.48}$ In 0.52 As		
$E_g(\Gamma) = 1.508 \text{ (eV)} \text{ at } 4\text{K}$		а
1.450 (eV) at 300 K		.1
$m_e^*/m_0 = 0.075$		d
$m_{hh}^*/m_0 = 0.41$		
$m_{lh}^* / m_0 = 0.096$		